Antibody-Drug Conjugates in Solid Tumors: Mechanisms, Clinical Advances, and Emerging Resistance Patterns
PDF

Keywords

Solid tumors
Trastuzumab deruxtecan
Resistance mechanisms
Immunotherapy combinations

How to Cite

1.
Abdou HA, Awny S. Antibody-Drug Conjugates in Solid Tumors: Mechanisms, Clinical Advances, and Emerging Resistance Patterns. ASIDE Onc. 2026;1(1):13-20. doi:10.71079/ASIDE.Onc.012026464

Abstract

Introduction: Antibody-drug conjugates (ADCs) represent a transformative therapeutic modality in oncology, combining targeted antibody delivery with potent cytotoxic payloads. This narrative literature review examines ADC development for solid tumors, emphasizing advances from 2022-2025 while incorporating foundational trials from 2017-2021.

Methods: We conducted comprehensive searches of PubMed, Embase, and major oncology conference proceedings (ASCO, ESMO, AACR) from January 2020 through December 2025, with emphasis on literature published since 2022. Search terms included: antibody-drug conjugates, ADC, solid tumors, specific agent names (trastuzumab deruxtecan, sacituzumab govitecan, enfortumab vedotin, tisotumab vedotin, datopotamab deruxtecan), resistance mechanisms, and combination therapy. We prioritized phase 2 and 3 clinical trials, mechanistic studies, and high-quality systematic reviews, clearly distinguishing phase 2 response data from comparative survival outcomes.

Results: Topoisomerase inhibitor-based ADCs demonstrated substantial activity across multiple tumor types. In HER2-positive breast cancer, trastuzumab deruxtecan achieved superior outcomes compared to trastuzumab emtansine in DESTINY-Breast03. HER2-targeted ADCs achieve higher response rates than tissue antigen-targeted ADCs, though comparisons are limited by population heterogeneity. Multiple resistance mechanisms include antigen downregulation, impaired internalization, and payload efflux. Established targets (HER2, TROP2, Nectin-4) have FDA-approved ADCs, while emerging targets (B7H3, CEACAM5) are under investigation. Combination strategies with immunotherapy show promising synergy.

Conclusions: ADCs have established clinical utility across solid tumors, with ongoing innovation in linker technology, payload selection, and target identification. Next-generation ADCs incorporating bispecific antibodies and dual payloads represent promising directions. Definitive evidence of improved long-term outcomes is needed before widespread adoption in curative-intent settings.

PDF

References

1. Fu Z, Li S, Han S, Shi C, Zhang Y. Antibody drug conjugate: the "biological missile" for targeted cancer therapy. Signal Transduct Target Ther. 2022: 93 [PMID: 35318309, https://doi.org/10.1038/s41392-022-00947-7]

2. Udofa E, Sankholkar D, Mitragotri S, Zhao Z. Antibody drug conjugates in the clinic. Bioeng Transl Med. 2024: e10677 [PMID: 39545074, https://doi.org/10.1002/btm2.10677]

3. Tarantino P, Ricciuti B, Pradhan SM, Tolaney SM. Optimizing the safety of antibody-drug conjugates for patients with solid tumours. Nat Rev Clin Oncol. 2023: 558 [PMID: 37296177, https://doi.org/10.1038/s41571-023-00783-w]

4. Modi S, Jacot W, Yamashita T, Sohn J, Vidal M, Tokunaga E, Tsurutani J, Ueno NT, Prat A, Chae YS, Lee KS, Niikura N, Park YH, Xu B, Wang X, Gil-Gil M, Li W, Pierga JY, Im SA, Moore HCF, Rugo HS, Yerushalmi R, Zagouri F, Gombos A, Kim SB, Liu Q, Luo T, Saura C, Schmid P, Sun T, Gambhire D, Yung L, Wang Y, Singh J, Vitazka P, Meinhardt G, Harbeck N, Cameron DA, Investigators DE-BT. Trastuzumab Deruxtecan in Previously Treated HER2-Low Advanced Breast Cancer. N Engl J Med. 2022: 9 [PMID: 35665782, https://doi.org/10.1056/NEJMoa2203690]

5. Cortes J, Kim SB, Chung WP, Im SA, Park YH, Hegg R, Kim MH, Tseng LM, Petry V, Chung CF, Iwata H, Hamilton E, Curigliano G, Xu B, Huang CS, Kim JH, Chiu JWY, Pedrini JL, Lee C, Liu Y, Cathcart J, Bako E, Verma S, Hurvitz SA, Investigators DE-BT. Trastuzumab Deruxtecan versus Trastuzumab Emtansine for Breast Cancer. N Engl J Med. 2022: 1143 [PMID: 35320644, https://doi.org/10.1056/NEJMoa2115022]

6. Bardia A, Hurvitz SA, Tolaney SM, Loirat D, Punie K, Oliveira M, Brufsky A, Sardesai SD, Kalinsky K, Zelnak AB, Weaver R, Traina T, Dalenc F, Aftimos P, Lynce F, Diab S, Cortes J, O'Shaughnessy J, Dieras V, Ferrario C, Schmid P, Carey LA, Gianni L, Piccart MJ, Loibl S, Goldenberg DM, Hong Q, Olivo MS, Itri LM, Rugo HS, Investigators ACT. Sacituzumab Govitecan in Metastatic Triple-Negative Breast Cancer. N Engl J Med. 2021: 1529 [PMID: 33882206, https://doi.org/10.1056/NEJMoa2028485]

7. Rugo HS, Bardia A, Marme F, Cortes J, Schmid P, Loirat D, Tredan O, Ciruelos E, Dalenc F, Gomez Pardo P, Jhaveri KL, Delaney R, Valdez T, Wang H, Motwani M, Yoon OK, Verret W, Tolaney SM. Overall survival with sacituzumab govitecan in hormone receptor-positive and human epidermal growth factor receptor 2-negative metastatic breast cancer (TROPiCS-02): a randomised, open-label, multicentre, phase 3 trial. Lancet. 2023: 1423 [PMID: 37633306, https://doi.org/10.1016/S0140-6736(23)01245-X]

8. Powles T, Rosenberg JE, Sonpavde GP, Loriot Y, Duran I, Lee JL, Matsubara N, Vulsteke C, Castellano D, Wu C, Campbell M, Matsangou M, Petrylak DP. Enfortumab Vedotin in Previously Treated Advanced Urothelial Carcinoma. N Engl J Med. 2021: 1125 [PMID: 33577729, https://doi.org/10.1056/NEJMoa2035807]

9. Powles T, Valderrama BP, Gupta S, Bedke J, Kikuchi E, Hoffman-Censits J, Iyer G, Vulsteke C, Park SH, Shin SJ, Castellano D, Fornarini G, Li JR, Gumus M, Mar N, Loriot Y, Flechon A, Duran I, Drakaki A, Narayanan S, Yu X, Gorla S, Homet Moreno B, van der Heijden MS, Investigators EVT. Enfortumab Vedotin and Pembrolizumab in Untreated Advanced Urothelial Cancer. N Engl J Med. 2024: 875 [PMID: 38446675, https://doi.org/10.1056/NEJMoa2312117]

10. Shitara K, Bang YJ, Iwasa S, Sugimoto N, Ryu MH, Sakai D, Chung HC, Kawakami H, Yabusaki H, Lee J, Saito K, Kawaguchi Y, Kamio T, Kojima A, Sugihara M, Yamaguchi K, Investigators DE-G. Trastuzumab Deruxtecan in Previously Treated HER2-Positive Gastric Cancer. N Engl J Med. 2020: 2419 [PMID: 32469182, https://doi.org/10.1056/NEJMoa2004413]

11. Li BT, Smit EF, Goto Y, Nakagawa K, Udagawa H, Mazieres J, Nagasaka M, Bazhenova L, Saltos AN, Felip E, Pacheco JM, Perol M, Paz-Ares L, Saxena K, Shiga R, Cheng Y, Acharyya S, Vitazka P, Shahidi J, Planchard D, Janne PA, Investigators DE-LT. Trastuzumab Deruxtecan in HER2-Mutant Non-Small-Cell Lung Cancer. N Engl J Med. 2022: 241 [PMID: 34534430, https://doi.org/10.1056/NEJMoa2112431]

12. Goldenberg DM, Sharkey RM. Antibody-drug conjugates targeting TROP-2 and incorporating SN-38: A case study of anti-TROP-2 sacituzumab govitecan. MAbs. 2019: 987 [PMID: 31208270, https://doi.org/10.1080/19420862.2019.1632115]

13. Masters JC, Nickens DJ, Xuan D, Shazer RL, Amantea M. Clinical toxicity of antibody drug conjugates: a meta-analysis of payloads. Invest New Drugs. 2018: 121 [PMID: 29027591, https://doi.org/10.1007/s10637-017-0520-6]

14. Beck A, Goetsch L, Dumontet C, Corvaia N. Strategies and challenges for the next generation of antibody-drug conjugates. Nat Rev Drug Discov. 2017: 315 [PMID: 28303026, https://doi.org/10.1038/nrd.2016.268]

15. Carter PJ, Lazar GA. Next generation antibody drugs: pursuit of the 'high-hanging fruit'. Nat Rev Drug Discov. 2018: 197 [PMID: 29192287, https://doi.org/10.1038/nrd.2017.227]

16. Rudnick SI, Lou J, Shaller CC, Tang Y, Klein-Szanto AJ, Weiner LM, Marks JD, Adams GP. Influence of affinity and antigen internalization on the uptake and penetration of Anti-HER2 antibodies in solid tumors. Cancer Res. 2011: 2250 [PMID: 21406401, https://doi.org/10.1158/0008-5472.CAN-10-2277]

17. Perez HL, Cardarelli PM, Deshpande S, Gangwar S, Schroeder GM, Vite GD, Borzilleri RM. Antibody-drug conjugates: current status and future directions. Drug Discov Today. 2014: 869 [PMID: 24239727, https://doi.org/10.1016/j.drudis.2013.11.004]

18. Lambert JM, Chari RV. Ado-trastuzumab Emtansine (T-DM1): an antibody-drug conjugate (ADC) for HER2-positive breast cancer. J Med Chem. 2014: 6949 [PMID: 24967516, https://doi.org/10.1021/jm500766w]

19. Drago JZ, Modi S, Chandarlapaty S. Unlocking the potential of antibody-drug conjugates for cancer therapy. Nat Rev Clin Oncol. 2021: 327 [PMID: 33558752, https://doi.org/10.1038/s41571-021-00470-8]

20. Khosravanian MJ, Mirzaei Y, Mer AH, Keyhani-Khankahdani M, Abdinia FS, Misamogooe F, Amirkhani Z, Bagheri N, Meyfour A, Jahandideh S, Barpour N, Nikmanesh Y, Shahsavarani H, Abdollahpour-Alitappeh M. Nectin-4-directed antibody-drug conjugates (ADCs): Spotlight on preclinical and clinical evidence. Life Sci. 2024: 122910 [PMID: 39002610, https://doi.org/10.1016/j.lfs.2024.122910]

21. Yu J, Li M, Liu X, Wu S, Li R, Jiang Y, Zheng J, Li Z, Xin K, Xu Z, Li S, Chen X. Implementation of antibody-drug conjugates in HER2-positive solid cancers: Recent advances and future directions. Biomed Pharmacother. 2024: 116522 [PMID: 38565055, https://doi.org/10.1016/j.biopha.2024.116522]

22. Tsuchikama K, An Z. Antibody-drug conjugates: recent advances in conjugation and linker chemistries. Protein Cell. 2018: 33 [PMID: 27743348, https://doi.org/10.1007/s13238-016-0323-0]

23. Jain N, Smith SW, Ghone S, Tomczuk B. Current ADC Linker Chemistry. Pharm Res. 2015: 3526 [PMID: 25759187, https://doi.org/10.1007/s11095-015-1657-7]

24. Ogitani Y, Aida T, Hagihara K, Yamaguchi J, Ishii C, Harada N, Soma M, Okamoto H, Oitate M, Arakawa S, Hirai T, Atsumi R, Nakada T, Hayakawa I, Abe Y, Agatsuma T. DS-8201a, A Novel HER2-Targeting ADC with a Novel DNA Topoisomerase I Inhibitor, Demonstrates a Promising Antitumor Efficacy with Differentiation from T-DM1. Clin Cancer Res. 2016: 5097 [PMID: 27026201, https://doi.org/10.1158/1078-0432.CCR-15-2822]

25. Staudacher AH, Brown MP. Antibody drug conjugates and bystander killing: is antigen-dependent internalisation required? Br J Cancer. 2017: 1736 [PMID: 29065110, https://doi.org/10.1038/bjc.2017.367]

26. Lyon RP, Bovee TD, Doronina SO, Burke PJ, Hunter JH, Neff-LaFord HD, Jonas M, Anderson ME, Setter JR, Senter PD. Reducing hydrophobicity of homogeneous antibody-drug conjugates improves pharmacokinetics and therapeutic index. Nat Biotechnol. 2015: 733 [PMID: 26076429, https://doi.org/10.1038/nbt.3212]

27. Rubahamya B, Dong S, Thurber GM. Clinical translation of antibody drug conjugate dosing in solid tumors from preclinical mouse data. Sci Adv. 2024: eadk1894 [PMID: 38820153, https://doi.org/10.1126/sciadv.adk1894]

28. Hamblett KJ, Senter PD, Chace DF, Sun MM, Lenox J, Cerveny CG, Kissler KM, Bernhardt SX, Kopcha AK, Zabinski RF, Meyer DL, Francisco JA. Effects of drug loading on the antitumor activity of a monoclonal antibody drug conjugate. Clin Cancer Res. 2004: 7063 [PMID: 15501986, https://doi.org/10.1158/1078-0432.CCR-04-0789]

29. Junutula JR, Raab H, Clark S, Bhakta S, Leipold DD, Weir S, Chen Y, Simpson M, Tsai SP, Dennis MS, Lu Y, Meng YG, Ng C, Yang J, Lee CC, Duenas E, Gorrell J, Katta V, Kim A, McDorman K, Flagella K, Venook R, Ross S, Spencer SD, Lee Wong W, Lowman HB, Vandlen R, Sliwkowski MX, Scheller RH, Polakis P, Mallet W. Site-specific conjugation of a cytotoxic drug to an antibody improves the therapeutic index. Nat Biotechnol. 2008: 925 [PMID: 18641636, https://doi.org/10.1038/nbt.1480]

30. Strop P, Liu SH, Dorywalska M, Delaria K, Dushin RG, Tran TT, Ho WH, Farias S, Casas MG, Abdiche Y, Zhou D, Chandrasekaran R, Samain C, Loo C, Rossi A, Rickert M, Krimm S, Wong T, Chin SM, Yu J, Dilley J, Chaparro-Riggers J, Filzen GF, O'Donnell CJ, Wang F, Myers JS, Pons J, Shelton DL, Rajpal A. Location matters: site of conjugation modulates stability and pharmacokinetics of antibody drug conjugates. Chem Biol. 2013: 161 [PMID: 23438745, https://doi.org/10.1016/j.chembiol.2013.01.010]

31. Conilh L, Sadilkova L, Viricel W, Dumontet C. Payload diversification: a key step in the development of antibody-drug conjugates. J Hematol Oncol. 2023: 3 [PMID: 36650546, https://doi.org/10.1186/s13045-022-01397-y]

32. Nagai Y, Oitate M, Shiozawa H, Ando O. Comprehensive preclinical pharmacokinetic evaluations of trastuzumab deruxtecan (DS-8201a), a HER2-targeting antibody-drug conjugate, in cynomolgus monkeys. Xenobiotica. 2019: 1086 [PMID: 30351177, https://doi.org/10.1080/00498254.2018.1531158]

33. Yaghoubi S, Karimi MH, Lotfinia M, Gharibi T, Mahi-Birjand M, Kavi E, Hosseini F, Sineh Sepehr K, Khatami M, Bagheri N, Abdollahpour-Alitappeh M. Potential drugs used in the antibody-drug conjugate (ADC) architecture for cancer therapy. J Cell Physiol. 2020: 31 [PMID: 31215038, https://doi.org/10.1002/jcp.28967]

34. Doronina SO, Toki BE, Torgov MY, Mendelsohn BA, Cerveny CG, Chace DF, DeBlanc RL, Gearing RP, Bovee TD, Siegall CB, Francisco JA, Wahl AF, Meyer DL, Senter PD. Development of potent monoclonal antibody auristatin conjugates for cancer therapy. Nat Biotechnol. 2003: 778 [PMID: 12778055, https://doi.org/10.1038/nbt832]

35. Francisco JA, Cerveny CG, Meyer DL, Mixan BJ, Klussman K, Chace DF, Rejniak SX, Gordon KA, DeBlanc R, Toki BE, Law CL, Doronina SO, Siegall CB, Senter PD, Wahl AF. cAC10-vcMMAE, an anti-CD30-monomethyl auristatin E conjugate with potent and selective antitumor activity. Blood. 2003: 1458 [PMID: 12714494, https://doi.org/10.1182/blood-2003-01-0039]

36. He J, Zeng X, Wang C, Wang E, Li Y. Antibody-drug conjugates in cancer therapy: mechanisms and clinical studies. MedComm (2020). 2024: e671 [PMID: 39070179, https://doi.org/10.1002/mco2.671]

37. Kang Z, Jin Y, Yu H, Li S, Qi Y. Relative efficacy of antibody-drug conjugates and other anti-HER2 treatments on survival in HER2-positive advanced breast cancer: a systematic review and meta-analysis. BMC Cancer. 2024: 708 [PMID: 38851684, https://doi.org/10.1186/s12885-024-12478-1]

38. Polakis P. Antibody Drug Conjugates for Cancer Therapy. Pharmacol Rev. 2016: 3 [PMID: 26589413, https://doi.org/10.1124/pr.114.009373]

39. Mahalingaiah PK, Ciurlionis R, Durbin KR, Yeager RL, Philip BK, Bawa B, Mantena SR, Enright BP, Liguori MJ, Van Vleet TR. Potential mechanisms of target-independent uptake and toxicity of antibody-drug conjugates. Pharmacol Ther. 2019: 110 [PMID: 31028836, https://doi.org/10.1016/j.pharmthera.2019.04.008]

40. Verma S, Miles D, Gianni L, Krop IE, Welslau M, Baselga J, Pegram M, Oh DY, Dieras V, Guardino E, Fang L, Lu MW, Olsen S, Blackwell K, Group ES. Trastuzumab emtansine for HER2-positive advanced breast cancer. N Engl J Med. 2012: 1783 [PMID: 23020162, https://doi.org/10.1056/NEJMoa1209124]

41. Coleman RL, Lorusso D, Gennigens C, Gonzalez-Martin A, Randall L, Cibula D, Lund B, Woelber L, Pignata S, Forget F, Redondo A, Vindelov SD, Chen M, Harris JR, Smith M, Nicacio LV, Teng MSL, Laenen A, Rangwala R, Manso L, Mirza M, Monk BJ, Vergote I, innova TVGOGE-cC. Efficacy and safety of tisotumab vedotin in previously treated recurrent or metastatic cervical cancer (innovaTV 204/GOG-3023/ENGOT-cx6): a multicentre, open-label, single-arm, phase 2 study. Lancet Oncol. 2021: 609 [PMID: 33845034, https://doi.org/10.1016/S1470-2045(21)00056-5]

42. Okajima D, Yasuda S, Maejima T, Karibe T, Sakurai K, Aida T, Toki T, Yamaguchi J, Kitamura M, Kamei R, Fujitani T, Honda T, Shibutani T, Muramatsu S, Nakada T, Goto R, Takahashi S, Yamaguchi M, Hamada H, Noguchi Y, Murakami M, Abe Y, Agatsuma T. Datopotamab Deruxtecan, a Novel TROP2-directed Antibody-drug Conjugate, Demonstrates Potent Antitumor Activity by Efficient Drug Delivery to Tumor Cells. Mol Cancer Ther. 2021: 2329 [PMID: 34413126, https://doi.org/10.1158/1535-7163.MCT-21-0206]

43. Hafeez U, Parakh S, Gan HK, Scott AM. Antibody-Drug Conjugates for Cancer Therapy. Molecules. 2020: 4764 [PMID: 33081383, https://doi.org/10.3390/molecules25204764]

44. Chen B, Zheng X, Wu J, Chen G, Yu J, Xu Y, Wu WKK, Tse GMK, To KF, Kang W. Antibody-drug conjugates in cancer therapy: current landscape, challenges, and future directions. Mol Cancer. 2025: 279 [PMID: 41184856, https://doi.org/10.1186/s12943-025-02489-2]

45. Matulonis UA, Lorusso D, Oaknin A, Pignata S, Dean A, Denys H, Colombo N, Van Gorp T, Konner JA, Marin MR, Harter P, Murphy CG, Wang J, Noble E, Esteves B, Method M, Coleman RL. Efficacy and Safety of Mirvetuximab Soravtansine in Patients With Platinum-Resistant Ovarian Cancer With High Folate Receptor Alpha Expression: Results From the SORAYA Study. J Clin Oncol. 2023: 2436 [PMID: 36716407, https://doi.org/10.1200/JCO.22.01900]

46. LoRusso PM, Weiss D, Guardino E, Girish S, Sliwkowski MX. Trastuzumab emtansine: a unique antibody-drug conjugate in development for human epidermal growth factor receptor 2-positive cancer. Clin Cancer Res. 2011: 6437 [PMID: 22003071, https://doi.org/10.1158/1078-0432.CCR-11-0762]

47. Takano Y, Kai W, Kanno H, Hanyu N. Cholinesterase as a predictor of skeletal muscle loss after gastrectomy for gastric cancer. Jpn J Clin Oncol. 2024: 986 [PMID: 38747941, https://doi.org/10.1093/jjco/hyae065]

48. Saber H, Leighton JK. An FDA oncology analysis of antibody-drug conjugates. Regul Toxicol Pharmacol. 2015: 444 [PMID: 25661711, https://doi.org/10.1016/j.yrtph.2015.01.014]

49. Hunter FW, Barker HR, Lipert B, Rothe F, Gebhart G, Piccart-Gebhart MJ, Sotiriou C, Jamieson SMF. Mechanisms of resistance to trastuzumab emtansine (T-DM1) in HER2-positive breast cancer. Br J Cancer. 2020: 603 [PMID: 31839676, https://doi.org/10.1038/s41416-019-0635-y]

50. Barok M, Joensuu H, Isola J. Trastuzumab emtansine: mechanisms of action and drug resistance. Breast Cancer Res. 2014: 209 [PMID: 24887180, https://doi.org/10.1186/bcr3621]

51. Garcia-Alonso S, Ocana A, Pandiella A. Resistance to Antibody-Drug Conjugates. Cancer Res. 2018: 2159 [PMID: 29653942, https://doi.org/10.1158/0008-5472.CAN-17-3671]

52. Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev Mol Cell Biol. 2001: 127 [PMID: 11252954, https://doi.org/10.1038/35052073]

53. Erickson HK, Park PU, Widdison WC, Kovtun YV, Garrett LM, Hoffman K, Lutz RJ, Goldmacher VS, Blattler WA. Antibody-maytansinoid conjugates are activated in targeted cancer cells by lysosomal degradation and linker-dependent intracellular processing. Cancer Res. 2006: 4426 [PMID: 16618769, https://doi.org/10.1158/0008-5472.CAN-05-4489]

54. Kovtun YV, Audette CA, Mayo MF, Jones GE, Doherty H, Maloney EK, Erickson HK, Sun X, Wilhelm S, Ab O, Lai KC, Widdison WC, Kellogg B, Johnson H, Pinkas J, Lutz RJ, Singh R, Goldmacher VS, Chari RV. Antibody-maytansinoid conjugates designed to bypass multidrug resistance. Cancer Res. 2010: 2528 [PMID: 20197459, https://doi.org/10.1158/0008-5472.CAN-09-3546]

55. Jain RK, Martin JD, Stylianopoulos T. The role of mechanical forces in tumor growth and therapy. Annu Rev Biomed Eng. 2014: 321 [PMID: 25014786, https://doi.org/10.1146/annurev-bioeng-071813-105259]

56. Katrini J, Boldrini L, Santoro C, Valenza C, Trapani D, Curigliano G. Biomarkers for Antibody-Drug Conjugates in Solid Tumors. Mol Cancer Ther. 2024: 436 [PMID: 38363729, https://doi.org/10.1158/1535-7163.MCT-23-0482]

57. Casi G, Neri D. Antibody-Drug Conjugates and Small Molecule-Drug Conjugates: Opportunities and Challenges for the Development of Selective Anticancer Cytotoxic Agents. J Med Chem. 2015: 8751 [PMID: 26079148, https://doi.org/10.1021/acs.jmedchem.5b00457]

58. Joubert N, Beck A, Dumontet C, Denevault-Sabourin C. Antibody-Drug Conjugates: The Last Decade. Pharmaceuticals (Basel). 2020: 245 [PMID: 32937862, https://doi.org/10.3390/ph13090245]

59. Trail PA, Dubowchik GM, Lowinger TB. Antibody drug conjugates for treatment of breast cancer: Novel targets and diverse approaches in ADC design. Pharmacol Ther. 2018: 126 [PMID: 28757155, https://doi.org/10.1016/j.pharmthera.2017.07.013]

60. Nicolo E, Giugliano F, Ascione L, Tarantino P, Corti C, Tolaney SM, Cristofanilli M, Curigliano G. Combining antibody-drug conjugates with immunotherapy in solid tumors: current landscape and future perspectives. Cancer Treat Rev. 2022: 102395 [PMID: 35468539, https://doi.org/10.1016/j.ctrv.2022.102395]

61. Birrer MJ, Moore KN, Betella I, Bates RC. Antibody-Drug Conjugate-Based Therapeutics: State of the Science. J Natl Cancer Inst. 2019: 538 [PMID: 30859213, https://doi.org/10.1093/jnci/djz035]

62. Coats S, Williams M, Kebble B, Dixit R, Tseng L, Yao NS, Tice DA, Soria JC. Antibody-Drug Conjugates: Future Directions in Clinical and Translational Strategies to Improve the Therapeutic Index. Clin Cancer Res. 2019: 5441 [PMID: 30979742, https://doi.org/10.1158/1078-0432.CCR-19-0272]

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Copyright (c) 2026 Hassan A. Abdou, Shadi Awny